THE UNIVERSITY OF MEMPHS®

Design of Structure

Structural Behavior

Architecture Design

Building Features

TABLE OF CONTENTS

Seismic Load Mechanism

Earthquake forces originate from the ficticious force due to the ground accleration and the mass source of the building.

It acts as a lateral load and the building behaves much like a cantilever beam.

Reinforced Lobby Structure force is decreased by four times.

The internal compression force imposed on the bottom floor are immensely greater.

GRIND CITY has added additional bracing and rigid wall members to withstand this force.

By doubling the member length, its critical buckling

Figure 2.a North-South Facade

DESIGN OF STRUCTURE

Figure 2.b East-West Facade

Horizontal In-plan Bracing due to Structural Irregularity

The T-shape of the floor plan can be systematic because of its structural irregularity. If we consider a line in Y-Y direction in the middle of the structure, the center of diaphargm does not lie in the middle of that line.

Due to the earthquake, the floor behaves like a cross section of the beam under torsion and the corners are exposed to more risk.

GRIND CITY features an in-plan bracing at the corners to reinforces these weaknesses.

Figure 3. Typical Floor Plan

Structural Bracing Topology Optimization Unlike the conventional X bracing design, GRIND CITY utilizes the Super Braces which yield a better strength-to-weight ratio (SWR).

Compared to the X bracing, Super Braces put less compression force on the outer column which is the most critical member due to its longer length.

SWR = 156 Figure 4.a. X Bracing

DESIGN OF STRUCTURE

SWR = 337 Figure 4.b. Super Bracing

STRUCTURAL BEHAVIOR

Max: (3.2, 18.070172); Min: (3.6, -58.648464)

X-X Roof Acceleration: 58.65 in/sec²

0.0

Y-Y Roof Displacement: 0.0003 in.

Max: (3.8, 1.150851); Min: (6.7, -0.304142)

Y-Y Roof Acceleration: 1.151 in/sec²

ARCHITECTURE DESIGN

GRIND CITY incorporates a very intricate design, with a sleek and bold manner of showing. The super bracing not only provides a key structural property but provides the structure a burst of character. Since this structure's shape is so unique, we brainstormed to create an innovative design that has never been seen before.

The exterior skeleton of our structure will incorporate some environmentally friendly green plants. These are ideal for the eco-friendly environmental design, in a city that prides itself on urban sustainability.

GRIND CITY will fit well into Greenest City Action Plan for Vancouver, because of its character, eco-friendly features, expensive taste, and adaptation to the surrounding environment and healthy atmosphere.

18 stories high totaling up to 57 inches tall
Provides 1600 square inches of rentable floor area
Aesthetically pleasing design of outer bracing system
Lobby floor height doubled for retail space

of

Annual Revenue						
Floors	Total Area	Rental Rate	Revenue			
1-2	178 in ²	\$250	\$44,570			
3-9	619 in ²	\$175	\$108,321			
10-15	535 in ²	\$225	\$120,338			
16-18	267 in ²	\$275	\$73,540			
Total Area	1600 in ²					
Total Annua	\$346,769					

Annual Building Cost					
			0.738 lb.		
		\$	7,360,503		
			\$3,119,878		
ost			\$104,804		
ost	North-South		\$7,133		
	East-West	\$	3,769		
	North-South		\$234,832		
ing Income	East-West		\$238,196		

Annual Building Cost						
Weight			0.738 lb.			
Construction Cost		\$	7,360,503			
Land Cost			\$3,119,878			
Annual Building Cost			\$104,804			
Annual Seismic Cost	North-South		\$7,133			
Annual Seismic Cost	East-West	\$	3,769			
	North-South		\$234,832			
Final Annual Building Income	East-West		\$238,196			

CONSTRUCTION

THANK YOU TO OUR SPONSORS

Allen&Hoshall

THE UNIVERSITY OF MEMPHIS® Herff College of Engineering

